Browse Source

Updates using noble single file modules

pull/78/head
Matthew Raymer 1 year ago
parent
commit
96fd4f68ef
  1. 1
      sw_scripts/additional-scripts.js
  2. 2230
      sw_scripts/noble-curves.js
  3. 3068
      sw_scripts/noble-hashes.js
  4. 295
      sw_scripts/safari-notifications.js
  5. 283
      sw_scripts/secp256k1.js
  6. 3542
      sw_scripts/sw-bn.js

1
sw_scripts/additional-scripts.js

@ -10,6 +10,7 @@ self.addEventListener("install", (event) => {
"safari-notifications.js",
"nacl.js",
"noble-curves.js",
"noble-hashes.js",
);
console.log("scripts imported", event);
});

2230
sw_scripts/noble-curves.js

File diff suppressed because it is too large

3068
sw_scripts/noble-hashes.js

File diff suppressed because it is too large

295
sw_scripts/safari-notifications.js

@ -1,12 +1,3 @@
async function generateSHA256Hash(data) {
const buffer = new TextEncoder().encode(data);
const hashBuffer = await crypto.subtle.digest("SHA-256", buffer);
const hashArray = Array.from(new Uint8Array(hashBuffer)); // convert buffer to byte array
const hashHex = hashArray
.map((byte) => byte.toString(16).padStart(2, "0"))
.join("");
return hashHex;
}
function bufferFromBase64(base64) {
const binaryString = atob(base64);
@ -20,32 +11,30 @@ function bufferFromBase64(base64) {
return bytes;
}
function fromString(str, encoding = 'utf8') {
if (encoding === 'utf8') {
function fromString(str, encoding = "utf8") {
if (encoding === "utf8") {
return new TextEncoder().encode(str);
} else if (encoding === 'base16') {
} else if (encoding === "base16") {
if (str.length % 2 !== 0) {
throw new Error('Invalid hex string length.');
throw new Error("Invalid hex string length.");
}
let bytes = new Uint8Array(str.length / 2);
for (let i = 0; i < str.length; i += 2) {
bytes[i/2] = parseInt(str.substring(i, i + 2), 16);
bytes[i / 2] = parseInt(str.substring(i, i + 2), 16);
}
return bytes;
} else if (encoding === 'base64url') {
str = str.replace(/-/g, '+').replace(/_/g, '/');
} else if (encoding === "base64url") {
str = str.replace(/-/g, "+").replace(/_/g, "/");
while (str.length % 4) {
str += '=';
str += "=";
}
return new Uint8Array(bufferFromBase64(str));
} else {
throw new Error(`Unsupported encoding "${encoding}"`);
}
}
}
/**
/**
* Convert a Uint8Array to a string with the given encoding.
*
* @param {Uint8Array} byteArray - The Uint8Array to convert.
@ -53,48 +42,50 @@ function bufferFromBase64(base64) {
* @returns {string} - The encoded string.
* @throws {Error} - Throws an error if the encoding is unsupported.
*/
function toString(byteArray, encoding = 'utf8') {
function toString(byteArray, encoding = "utf8") {
switch (encoding) {
case 'utf8':
case "utf8":
return decodeUTF8(byteArray);
case 'base16':
case "base16":
return toBase16(byteArray);
case 'base64url':
case "base64url":
return toBase64Url(byteArray);
default:
throw new Error(`Unsupported encoding "${encoding}"`);
}
}
}
/**
/**
* Decode a Uint8Array as a UTF-8 string.
*
* @param {Uint8Array} byteArray
* @returns {string}
*/
function decodeUTF8(byteArray) {
function decodeUTF8(byteArray) {
return new TextDecoder().decode(byteArray);
}
}
/**
/**
* Convert a Uint8Array to a base16 (hex) encoded string.
*
* @param {Uint8Array} byteArray
* @returns {string}
*/
function toBase16(byteArray) {
return Array.from(byteArray).map(byte => byte.toString(16).padStart(2, '0')).join('');
}
function toBase16(byteArray) {
return Array.from(byteArray)
.map((byte) => byte.toString(16).padStart(2, "0"))
.join("");
}
/**
/**
* Convert a Uint8Array to a base64url encoded string.
*
* @param {Uint8Array} byteArray
* @returns {string}
*/
function toBase64Url(byteArray) {
function toBase64Url(byteArray) {
let uint8Array = new Uint8Array(byteArray);
let binaryString = '';
let binaryString = "";
for (let i = 0; i < uint8Array.length; i++) {
binaryString += String.fromCharCode(uint8Array[i]);
}
@ -102,20 +93,19 @@ function bufferFromBase64(base64) {
// Encode to base64
let base64 = btoa(binaryString);
return base64.replace(/\+/g, '-').replace(/\//g, '_').replace(/=+$/, '');
}
return base64.replace(/\+/g, "-").replace(/\//g, "_").replace(/=+$/, "");
}
const u8a = { toString, fromString };
function sha256(payload) {
const data = typeof payload === 'string' ? u8a.fromString(payload) : payload;
return generateSHA256Hash(data);
}
const u8a = { toString, fromString };
function sha256(payload) {
const data = typeof payload === "string" ? u8a.fromString(payload) : payload;
return nobleHashes.sha256(data);
}
async function accessToken(identifier) {
const did = identifier['did'];
const privateKeyHex = identifier['keys'][0]['privateKeyHex'];
async function accessToken(identifier) {
const did = identifier["did"];
const privateKeyHex = identifier["keys"][0]["privateKeyHex"];
const signer = await SimpleSigner(privateKeyHex);
@ -131,15 +121,18 @@ function bufferFromBase64(base64) {
});
console.error(jwt);
return jwt;
}
}
async function createJWT(payload, options, header = {}) {
async function createJWT(payload, options, header = {}) {
const { issuer, signer, alg, expiresIn, canonicalize } = options;
if (!signer) throw new Error('missing_signer: No Signer functionality has been configured');
if (!issuer) throw new Error('missing_issuer: No issuing DID has been configured');
if (!header.typ) header.typ = 'JWT';
if (!signer)
throw new Error(
"missing_signer: No Signer functionality has been configured",
);
if (!issuer)
throw new Error("missing_issuer: No issuing DID has been configured");
if (!header.typ) header.typ = "JWT";
if (!header.alg) header.alg = alg;
const timestamps = {
@ -148,44 +141,48 @@ function bufferFromBase64(base64) {
};
if (expiresIn) {
if (typeof expiresIn === 'number') {
if (typeof expiresIn === "number") {
timestamps.exp = (payload.nbf || timestamps.iat) + Math.floor(expiresIn);
} else {
throw new Error('invalid_argument: JWT expiresIn is not a number');
throw new Error("invalid_argument: JWT expiresIn is not a number");
}
}
const fullPayload = { ...timestamps, ...payload, iss: issuer };
return createJWS(fullPayload, signer, header, { canonicalize });
}
const defaultAlg = 'ES256K'
}
const defaultAlg = "ES256K";
async function createJWS(payload, signer, header = {}, options = {}) {
async function createJWS(payload, signer, header = {}, options = {}) {
if (!header.alg) header.alg = defaultAlg;
const encodedPayload = typeof payload === 'string' ? payload : encodeSection(payload, options.canonicalize);
const signingInput = [encodeSection(header, options.canonicalize), encodedPayload].join('.');
const encodedPayload =
typeof payload === "string"
? payload
: encodeSection(payload, options.canonicalize);
const signingInput = [
encodeSection(header, options.canonicalize),
encodedPayload,
].join(".");
const jwtSigner = ES256KSignerAlg(false);
const signature = await jwtSigner(signingInput, signer);
// JWS Compact Serialization
// https://www.rfc-editor.org/rfc/rfc7515#section-7.1
return [signingInput, signature].join('.');
}
return [signingInput, signature].join(".");
}
function canonicalizeData (object) {
if (typeof object === 'number' && isNaN(object)) {
throw new Error('NaN is not allowed');
function canonicalizeData(object) {
if (typeof object === "number" && isNaN(object)) {
throw new Error("NaN is not allowed");
}
if (typeof object === 'number' && !isFinite(object)) {
throw new Error('Infinity is not allowed');
if (typeof object === "number" && !isFinite(object)) {
throw new Error("Infinity is not allowed");
}
if (object === null || typeof object !== 'object') {
if (object === null || typeof object !== "object") {
return JSON.stringify(object);
}
@ -195,72 +192,75 @@ function bufferFromBase64(base64) {
if (Array.isArray(object)) {
const values = object.reduce((t, cv, ci) => {
const comma = ci === 0 ? '' : ',';
const value = cv === undefined || typeof cv === 'symbol' ? null : cv;
const comma = ci === 0 ? "" : ",";
const value = cv === undefined || typeof cv === "symbol" ? null : cv;
return `${t}${comma}${serialize(value)}`;
}, '');
}, "");
return `[${values}]`;
}
const values = Object.keys(object).sort().reduce((t, cv) => {
if (object[cv] === undefined ||
typeof object[cv] === 'symbol') {
const values = Object.keys(object)
.sort()
.reduce((t, cv) => {
if (object[cv] === undefined || typeof object[cv] === "symbol") {
return t;
}
const comma = t.length === 0 ? '' : ',';
const comma = t.length === 0 ? "" : ",";
return `${t}${comma}${serialize(cv)}:${serialize(object[cv])}`;
}, '');
}, "");
return `{${values}}`;
};
}
function encodeSection(data, shouldCanonicalize = false) {
function encodeSection(data, shouldCanonicalize = false) {
if (shouldCanonicalize) {
return encodeBase64url(canonicalizeData(data));
} else {
return encodeBase64url(JSON.stringify(data));
}
}
}
function encodeBase64url(s) {
return bytesToBase64url(u8a.fromString(s))
}
function encodeBase64url(s) {
return bytesToBase64url(u8a.fromString(s));
}
function instanceOfEcdsaSignature(object) {
return typeof object === 'object' && 'r' in object && 's' in object;
}
function instanceOfEcdsaSignature(object) {
return typeof object === "object" && "r" in object && "s" in object;
}
function ES256KSignerAlg(recoverable) {
function ES256KSignerAlg(recoverable) {
return async function sign(payload, signer) {
const signature = await signer(payload);
if (instanceOfEcdsaSignature(signature)) {
return toJose(signature, recoverable);
} else {
if (recoverable && typeof fromJose(signature).recoveryParam === 'undefined') {
throw new Error(`not_supported: ES256K-R not supported when signer doesn't provide a recovery param`);
if (
recoverable &&
typeof fromJose(signature).recoveryParam === "undefined"
) {
throw new Error(
`not_supported: ES256K-R not supported when signer doesn't provide a recovery param`,
);
}
return signature;
}
};
}
}
function leftpad(data, size = 64) {
function leftpad(data, size = 64) {
if (data.length === size) return data;
return '0'.repeat(size - data.length) + data;
}
return "0".repeat(size - data.length) + data;
}
async function SimpleSigner(hexPrivateKey) {
async function SimpleSigner(hexPrivateKey) {
const signer = await ES256KSigner(hexToBytes(hexPrivateKey), true);
return async (data) => {
const signature = (await signer(data));
const signature = await signer(data);
return fromJose(signature);
};
}
}
function hexToBytes(s, minLength) {
let input = s.startsWith('0x') ? s.substring(2) : s;
function hexToBytes(s, minLength) {
let input = s.startsWith("0x") ? s.substring(2) : s;
if (input.length % 2 !== 0) {
input = `0${input}`;
@ -268,73 +268,79 @@ function bufferFromBase64(base64) {
if (minLength) {
const paddedLength = Math.max(input.length, minLength * 2);
input = input.padStart(paddedLength, '00');
}
return u8a.fromString(input.toLowerCase(), 'base16');
input = input.padStart(paddedLength, "00");
}
return u8a.fromString(input.toLowerCase(), "base16");
}
function ES256KSigner(privateKey, recoverable = false) {
function ES256KSigner(privateKey, recoverable = false) {
const privateKeyBytes = privateKey;
if (privateKeyBytes.length !== 32) {
throw new Error(`bad_key: Invalid private key format. Expecting 32 bytes, but got ${privateKeyBytes.length}`);
throw new Error(
`bad_key: Invalid private key format. Expecting 32 bytes, but got ${privateKeyBytes.length}`,
);
}
return async function(data) {
const hash = await sha256(data);
const signature = nobleCurves.secp256k1.sign(hash, privateKeyBytes);
return toJose({
return async function (data) {
const signature = nobleCurves.secp256k1.sign(sha256(data), privateKeyBytes);
console.error(signature);
return toJose(
{
r: leftpad(signature.r.toString(16)),
s: leftpad(signature.s.toString(16)),
recoveryParam: signature.recovery,
}, recoverable);
}
}
},
recoverable,
);
};
}
function toJose(signature, recoverable) {
function toJose(signature, recoverable) {
const { r, s, recoveryParam } = signature;
const jose = new Uint8Array(recoverable ? 65 : 64);
jose.set(u8a.fromString(r, 'base16'), 0);
jose.set(u8a.fromString(s, 'base16'), 32);
jose.set(u8a.fromString(r, "base16"), 0);
jose.set(u8a.fromString(s, "base16"), 32);
if (recoverable) {
if (typeof recoveryParam === 'undefined') {
throw new Error('Signer did not return a recoveryParam');
if (typeof recoveryParam === "undefined") {
throw new Error("Signer did not return a recoveryParam");
}
jose[64] = recoveryParam;
}
return bytesToBase64url(jose);
}
}
function bytesToBase64url(b) {
return u8a.toString(b, 'base64url');
}
function bytesToBase64url(b) {
return u8a.toString(b, "base64url");
}
function base64ToBytes(s) {
const inputBase64Url = s.replace(/\+/g, '-').replace(/\//g, '_').replace(/=/g, '')
return u8a.fromString(inputBase64Url, 'base64url')
}
function base64ToBytes(s) {
const inputBase64Url = s
.replace(/\+/g, "-")
.replace(/\//g, "_")
.replace(/=/g, "");
return u8a.fromString(inputBase64Url, "base64url");
}
function bytesToHex(b) {
return u8a.toString(b, 'base16')
}
function bytesToHex(b) {
return u8a.toString(b, "base16");
}
function fromJose(signature) {
function fromJose(signature) {
const signatureBytes = base64ToBytes(signature);
if (signatureBytes.length < 64 || signatureBytes.length > 65) {
throw new TypeError(`Wrong size for signature. Expected 64 or 65 bytes, but got ${signatureBytes.length}`,);
throw new TypeError(
`Wrong size for signature. Expected 64 or 65 bytes, but got ${signatureBytes.length}`,
);
}
const r = bytesToHex(signatureBytes.slice(0, 32));
const s = bytesToHex(signatureBytes.slice(32, 64));
const recoveryParam = signatureBytes.length === 65 ? signatureBytes[64] : undefined;
const recoveryParam =
signatureBytes.length === 65 ? signatureBytes[64] : undefined;
return { r, s, recoveryParam };
}
}
function validateBase64(s) {
if (
@ -444,12 +450,15 @@ async function getNotificationCount() {
"Content-Type": "application/json",
};
headers["Authorization"] = "Bearer " + await accessToken(identifier);
headers["Authorization"] = "Bearer " + (await accessToken(identifier));
let response = await fetch("https://test-api.endorser.ch/api/v2/report/claims", {
method: 'GET',
let response = await fetch(
"https://test-api.endorser.ch/api/v2/report/claims",
{
method: "GET",
headers: headers,
});
},
);
console.error(did, response.status);
console.error(await response.json());

283
sw_scripts/secp256k1.js

@ -1,283 +0,0 @@
(function () {
randomBytes = (length) => self.crypto.getRandomValues(new Uint8Array(length));
self.Secp256k1 = exports = {};
function uint256(x, base) {
return new BN(x, base);
}
function rnd(P) {
return uint256(randomBytes(32)).umod(P); //TODO red
}
const A = uint256(0);
const B = uint256(7);
const GX = uint256(
"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",
16,
);
const GY = uint256(
"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8",
16,
);
const P = uint256(
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F",
16,
);
const N = uint256(
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141",
16,
);
//const RED = BN.red(P)
const _0 = uint256(0);
const _1 = uint256(1);
// function for elliptic curve multiplication in jacobian coordinates using Double-and-add method
function ecmul(_p, _d) {
let R = [_0, _0, _0];
//return (0,0) if d=0 or (x1,y1)=(0,0)
if (_d == 0 || (_p[0] == 0 && _p[1] == 0)) {
return R;
}
let T = [
_p[0], //x-coordinate temp
_p[1], //y-coordinate temp
_p[2], //z-coordinate temp
];
const d = _d.clone();
while (d != 0) {
if (d.testn(0)) {
//if last bit is 1 add T to result
R = ecadd(T, R);
}
T = ecdouble(T); //double temporary coordinates
d.iushrn(1); //"cut off" last bit
}
return R;
}
function mulmod(a, b, P) {
return a.mul(b).umod(P); //TODO red
}
function addmod(a, b, P) {
return a.add(b).umod(P); //TODO red
}
function invmod(a, P) {
return a.invm(P); //TODO redq
}
function mulG(k) {
const GinJ = AtoJ(GX, GY);
const PUBinJ = ecmul(GinJ, k);
return JtoA(PUBinJ);
}
function assert(cond, msg) {
if (!cond) {
throw Error("assertion failed: " + msg);
}
}
function ecsign(d, z) {
assert(d != 0, "d must not be 0");
assert(z != 0, "z must not be 0");
while (true) {
const k = rnd(P);
const R = mulG(k);
if (R[0] == 0) continue;
const s = mulmod(invmod(k, N), addmod(z, mulmod(R[0], d, N), N), N);
if (s == 0) continue;
//FIXME: why do I need this
if (s.testn(255)) continue;
return { r: toHex(R[0]), s: toHex(s), v: R[1].testn(0) ? 1 : 0 };
}
}
function JtoA(p) {
const zInv = invmod(p[2], P);
const zInv2 = mulmod(zInv, zInv, P);
return [mulmod(p[0], zInv2, P), mulmod(p[1], mulmod(zInv, zInv2, P), P)];
}
//point doubling for elliptic curve in jacobian coordinates
//formula from https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
function ecdouble(_p) {
if (_p[1] == 0) {
//return point at infinity
return [_1, _1, _0];
}
const z2 = mulmod(_p[2], _p[2], P);
const m = addmod(
mulmod(A, mulmod(z2, z2, P), P),
mulmod(uint256(3), mulmod(_p[0], _p[0], P), P),
P,
);
const y2 = mulmod(_p[1], _p[1], P);
const s = mulmod(uint256(4), mulmod(_p[0], y2, P), P);
const x = addmod(mulmod(m, m, P), negmod(mulmod(s, uint256(2), P), P), P);
return [
x,
addmod(
mulmod(m, addmod(s, negmod(x, P), P), P),
negmod(mulmod(uint256(8), mulmod(y2, y2, P), P), P),
P,
),
mulmod(uint256(2), mulmod(_p[1], _p[2], P), P),
];
}
function negmod(a, P) {
return P.sub(a);
}
// point addition for elliptic curve in jacobian coordinates
// formula from https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
function ecadd(_p, _q) {
if (_q[0] == 0 && _q[1] == 0 && _q[2] == 0) {
return _p;
}
let z2 = mulmod(_q[2], _q[2], P);
const u1 = mulmod(_p[0], z2, P);
const s1 = mulmod(_p[1], mulmod(z2, _q[2], P), P);
z2 = mulmod(_p[2], _p[2], P);
let u2 = mulmod(_q[0], z2, P);
let s2 = mulmod(_q[1], mulmod(z2, _p[2], P), P);
if (u1.eq(u2)) {
if (!s1.eq(s2)) {
//return point at infinity
return [_1, _1, _0];
} else {
return ecdouble(_p);
}
}
u2 = addmod(u2, negmod(u1, P), P);
z2 = mulmod(u2, u2, P);
const t2 = mulmod(u1, z2, P);
z2 = mulmod(u2, z2, P);
s2 = addmod(s2, negmod(s1, P), P);
const x = addmod(
addmod(mulmod(s2, s2, P), negmod(z2, P), P),
negmod(mulmod(uint256(2), t2, P), P),
P,
);
return [
x,
addmod(
mulmod(s2, addmod(t2, negmod(x, P), P), P),
negmod(mulmod(s1, z2, P), P),
P,
),
mulmod(u2, mulmod(_p[2], _q[2], P), P),
];
}
function AtoJ(x, y) {
return [uint256(x), uint256(y), _1];
}
function isValidPoint(x, y) {
const yy = addmod(mulmod(mulmod(x, x, P), x, P), B, P);
return yy.eq(mulmod(y, y, P));
}
function toHex(bn) {
return (
"00000000000000000000000000000000000000000000000000000000000000000000000000000000" +
bn.toString(16)
).slice(-64);
}
function decompressKey(x, yBit) {
let redP = BN.red("k256");
x = x.toRed(redP);
const y = x.redMul(x).redMul(x).redAdd(B.toRed(redP)).redSqrt();
const sign = y.testn(0);
return (sign != yBit ? y.redNeg() : y).fromRed();
}
function generatePublicKeyFromPrivateKeyData(pk) {
const p = mulG(pk);
return { x: toHex(p[0]), y: toHex(p[1]) };
}
function ecrecover(recId, sigr, sigs, message) {
assert(recId >= 0 && recId <= 3, "recId must be 0..3");
assert(sigr != 0, "sigr must not be 0");
assert(sigs != 0, "sigs must not be 0");
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
const x = addmod(uint256(sigr), P.muln(recId >> 1), P);
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
if (x.gte(P)) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
const y = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
// if (!R.mul(N).isInfinity())
// return null
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
const e = uint256(message);
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
const eNeg = negmod(e, N);
const rInv = invmod(sigr, N);
const srInv = mulmod(rInv, sigs, N);
const eNegrInv = mulmod(rInv, eNeg, N);
const R = AtoJ(x, y);
const G = AtoJ(GX, GY);
const qinJ = ecadd(ecmul(G, eNegrInv), ecmul(R, srInv));
const p = JtoA(qinJ);
return { x: toHex(p[0]), y: toHex(p[1]) };
}
function ecverify(Qx, Qy, sigr, sigs, z) {
if (sigs == 0 || sigr == 0) {
return false;
}
const w = invmod(sigs, N);
const u1 = mulmod(z, w, N);
const u2 = mulmod(sigr, w, N);
const Q = AtoJ(Qx, Qy);
const G = AtoJ(GX, GY);
const RinJ = ecadd(ecmul(G, u1), ecmul(Q, u2));
const r = JtoA(RinJ);
return sigr.eq(r[0]);
}
exports.uint256 = uint256;
exports.ecsign = ecsign;
exports.ecrecover = ecrecover;
exports.generatePublicKeyFromPrivateKeyData =
generatePublicKeyFromPrivateKeyData;
exports.decompressKey = decompressKey;
exports.isValidPoint = isValidPoint;
exports.ecverify = ecverify;
})();

3542
sw_scripts/sw-bn.js

File diff suppressed because it is too large
Loading…
Cancel
Save