|
|
|
(function () {
|
|
|
|
randomBytes = (length) => self.crypto.getRandomValues(new Uint8Array(length));
|
|
|
|
self.Secp256k1 = exports = {};
|
|
|
|
|
|
|
|
function uint256(x, base) {
|
|
|
|
return new BN(x, base);
|
|
|
|
}
|
|
|
|
|
|
|
|
function rnd(P) {
|
|
|
|
return uint256(randomBytes(32)).umod(P); //TODO red
|
|
|
|
}
|
|
|
|
|
|
|
|
const A = uint256(0);
|
|
|
|
const B = uint256(7);
|
|
|
|
const GX = uint256(
|
|
|
|
"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",
|
|
|
|
16,
|
|
|
|
);
|
|
|
|
const GY = uint256(
|
|
|
|
"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8",
|
|
|
|
16,
|
|
|
|
);
|
|
|
|
const P = uint256(
|
|
|
|
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F",
|
|
|
|
16,
|
|
|
|
);
|
|
|
|
const N = uint256(
|
|
|
|
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141",
|
|
|
|
16,
|
|
|
|
);
|
|
|
|
//const RED = BN.red(P)
|
|
|
|
const _0 = uint256(0);
|
|
|
|
const _1 = uint256(1);
|
|
|
|
|
|
|
|
// function for elliptic curve multiplication in jacobian coordinates using Double-and-add method
|
|
|
|
function ecmul(_p, _d) {
|
|
|
|
let R = [_0, _0, _0];
|
|
|
|
|
|
|
|
//return (0,0) if d=0 or (x1,y1)=(0,0)
|
|
|
|
if (_d == 0 || (_p[0] == 0 && _p[1] == 0)) {
|
|
|
|
return R;
|
|
|
|
}
|
|
|
|
let T = [
|
|
|
|
_p[0], //x-coordinate temp
|
|
|
|
_p[1], //y-coordinate temp
|
|
|
|
_p[2], //z-coordinate temp
|
|
|
|
];
|
|
|
|
|
|
|
|
const d = _d.clone();
|
|
|
|
while (d != 0) {
|
|
|
|
if (d.testn(0)) {
|
|
|
|
//if last bit is 1 add T to result
|
|
|
|
R = ecadd(T, R);
|
|
|
|
}
|
|
|
|
T = ecdouble(T); //double temporary coordinates
|
|
|
|
d.iushrn(1); //"cut off" last bit
|
|
|
|
}
|
|
|
|
|
|
|
|
return R;
|
|
|
|
}
|
|
|
|
|
|
|
|
function mulmod(a, b, P) {
|
|
|
|
return a.mul(b).umod(P); //TODO red
|
|
|
|
}
|
|
|
|
|
|
|
|
function addmod(a, b, P) {
|
|
|
|
return a.add(b).umod(P); //TODO red
|
|
|
|
}
|
|
|
|
|
|
|
|
function invmod(a, P) {
|
|
|
|
return a.invm(P); //TODO redq
|
|
|
|
}
|
|
|
|
|
|
|
|
function mulG(k) {
|
|
|
|
const GinJ = AtoJ(GX, GY);
|
|
|
|
const PUBinJ = ecmul(GinJ, k);
|
|
|
|
return JtoA(PUBinJ);
|
|
|
|
}
|
|
|
|
|
|
|
|
function assert(cond, msg) {
|
|
|
|
if (!cond) {
|
|
|
|
throw Error("assertion failed: " + msg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
function ecsign(d, z) {
|
|
|
|
assert(d != 0, "d must not be 0");
|
|
|
|
assert(z != 0, "z must not be 0");
|
|
|
|
while (true) {
|
|
|
|
const k = rnd(P);
|
|
|
|
const R = mulG(k);
|
|
|
|
if (R[0] == 0) continue;
|
|
|
|
const s = mulmod(invmod(k, N), addmod(z, mulmod(R[0], d, N), N), N);
|
|
|
|
if (s == 0) continue;
|
|
|
|
//FIXME: why do I need this
|
|
|
|
if (s.testn(255)) continue;
|
|
|
|
return { r: toHex(R[0]), s: toHex(s), v: R[1].testn(0) ? 1 : 0 };
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
function JtoA(p) {
|
|
|
|
const zInv = invmod(p[2], P);
|
|
|
|
const zInv2 = mulmod(zInv, zInv, P);
|
|
|
|
return [mulmod(p[0], zInv2, P), mulmod(p[1], mulmod(zInv, zInv2, P), P)];
|
|
|
|
}
|
|
|
|
|
|
|
|
//point doubling for elliptic curve in jacobian coordinates
|
|
|
|
//formula from https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
|
|
|
|
function ecdouble(_p) {
|
|
|
|
if (_p[1] == 0) {
|
|
|
|
//return point at infinity
|
|
|
|
return [_1, _1, _0];
|
|
|
|
}
|
|
|
|
|
|
|
|
const z2 = mulmod(_p[2], _p[2], P);
|
|
|
|
const m = addmod(
|
|
|
|
mulmod(A, mulmod(z2, z2, P), P),
|
|
|
|
mulmod(uint256(3), mulmod(_p[0], _p[0], P), P),
|
|
|
|
P,
|
|
|
|
);
|
|
|
|
const y2 = mulmod(_p[1], _p[1], P);
|
|
|
|
const s = mulmod(uint256(4), mulmod(_p[0], y2, P), P);
|
|
|
|
|
|
|
|
const x = addmod(mulmod(m, m, P), negmod(mulmod(s, uint256(2), P), P), P);
|
|
|
|
return [
|
|
|
|
x,
|
|
|
|
addmod(
|
|
|
|
mulmod(m, addmod(s, negmod(x, P), P), P),
|
|
|
|
negmod(mulmod(uint256(8), mulmod(y2, y2, P), P), P),
|
|
|
|
P,
|
|
|
|
),
|
|
|
|
mulmod(uint256(2), mulmod(_p[1], _p[2], P), P),
|
|
|
|
];
|
|
|
|
}
|
|
|
|
|
|
|
|
function negmod(a, P) {
|
|
|
|
return P.sub(a);
|
|
|
|
}
|
|
|
|
|
|
|
|
// point addition for elliptic curve in jacobian coordinates
|
|
|
|
// formula from https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
|
|
|
|
function ecadd(_p, _q) {
|
|
|
|
if (_q[0] == 0 && _q[1] == 0 && _q[2] == 0) {
|
|
|
|
return _p;
|
|
|
|
}
|
|
|
|
|
|
|
|
let z2 = mulmod(_q[2], _q[2], P);
|
|
|
|
const u1 = mulmod(_p[0], z2, P);
|
|
|
|
const s1 = mulmod(_p[1], mulmod(z2, _q[2], P), P);
|
|
|
|
z2 = mulmod(_p[2], _p[2], P);
|
|
|
|
let u2 = mulmod(_q[0], z2, P);
|
|
|
|
let s2 = mulmod(_q[1], mulmod(z2, _p[2], P), P);
|
|
|
|
|
|
|
|
if (u1.eq(u2)) {
|
|
|
|
if (!s1.eq(s2)) {
|
|
|
|
//return point at infinity
|
|
|
|
return [_1, _1, _0];
|
|
|
|
} else {
|
|
|
|
return ecdouble(_p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
u2 = addmod(u2, negmod(u1, P), P);
|
|
|
|
z2 = mulmod(u2, u2, P);
|
|
|
|
const t2 = mulmod(u1, z2, P);
|
|
|
|
z2 = mulmod(u2, z2, P);
|
|
|
|
s2 = addmod(s2, negmod(s1, P), P);
|
|
|
|
const x = addmod(
|
|
|
|
addmod(mulmod(s2, s2, P), negmod(z2, P), P),
|
|
|
|
negmod(mulmod(uint256(2), t2, P), P),
|
|
|
|
P,
|
|
|
|
);
|
|
|
|
return [
|
|
|
|
x,
|
|
|
|
addmod(
|
|
|
|
mulmod(s2, addmod(t2, negmod(x, P), P), P),
|
|
|
|
negmod(mulmod(s1, z2, P), P),
|
|
|
|
P,
|
|
|
|
),
|
|
|
|
mulmod(u2, mulmod(_p[2], _q[2], P), P),
|
|
|
|
];
|
|
|
|
}
|
|
|
|
|
|
|
|
function AtoJ(x, y) {
|
|
|
|
return [uint256(x), uint256(y), _1];
|
|
|
|
}
|
|
|
|
|
|
|
|
function isValidPoint(x, y) {
|
|
|
|
const yy = addmod(mulmod(mulmod(x, x, P), x, P), B, P);
|
|
|
|
return yy.eq(mulmod(y, y, P));
|
|
|
|
}
|
|
|
|
|
|
|
|
function toHex(bn) {
|
|
|
|
return (
|
|
|
|
"00000000000000000000000000000000000000000000000000000000000000000000000000000000" +
|
|
|
|
bn.toString(16)
|
|
|
|
).slice(-64);
|
|
|
|
}
|
|
|
|
|
|
|
|
function decompressKey(x, yBit) {
|
|
|
|
let redP = BN.red("k256");
|
|
|
|
x = x.toRed(redP);
|
|
|
|
const y = x.redMul(x).redMul(x).redAdd(B.toRed(redP)).redSqrt();
|
|
|
|
const sign = y.testn(0);
|
|
|
|
return (sign != yBit ? y.redNeg() : y).fromRed();
|
|
|
|
}
|
|
|
|
|
|
|
|
function generatePublicKeyFromPrivateKeyData(pk) {
|
|
|
|
const p = mulG(pk);
|
|
|
|
return { x: toHex(p[0]), y: toHex(p[1]) };
|
|
|
|
}
|
|
|
|
|
|
|
|
function ecrecover(recId, sigr, sigs, message) {
|
|
|
|
assert(recId >= 0 && recId <= 3, "recId must be 0..3");
|
|
|
|
assert(sigr != 0, "sigr must not be 0");
|
|
|
|
assert(sigs != 0, "sigs must not be 0");
|
|
|
|
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
|
|
|
|
// 1.1 Let x = r + jn
|
|
|
|
const x = addmod(uint256(sigr), P.muln(recId >> 1), P);
|
|
|
|
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
|
|
|
|
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
|
|
|
|
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
|
|
|
|
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
|
|
|
|
// do another iteration of Step 1.
|
|
|
|
//
|
|
|
|
// More concisely, what these points mean is to use X as a compressed public key.
|
|
|
|
if (x.gte(P)) {
|
|
|
|
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
|
|
|
|
// So it's encoded in the recId.
|
|
|
|
const y = decompressKey(x, (recId & 1) == 1);
|
|
|
|
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
|
|
|
|
// if (!R.mul(N).isInfinity())
|
|
|
|
// return null
|
|
|
|
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
|
|
|
|
const e = uint256(message);
|
|
|
|
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
|
|
|
|
// 1.6.1. Compute a candidate public key as:
|
|
|
|
// Q = mi(r) * (sR - eG)
|
|
|
|
//
|
|
|
|
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
|
|
|
|
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
|
|
|
|
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
|
|
|
|
// ** is point multiplication and + is point addition (the EC group operator).
|
|
|
|
//
|
|
|
|
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
|
|
|
|
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
|
|
|
|
const eNeg = negmod(e, N);
|
|
|
|
const rInv = invmod(sigr, N);
|
|
|
|
const srInv = mulmod(rInv, sigs, N);
|
|
|
|
const eNegrInv = mulmod(rInv, eNeg, N);
|
|
|
|
const R = AtoJ(x, y);
|
|
|
|
const G = AtoJ(GX, GY);
|
|
|
|
const qinJ = ecadd(ecmul(G, eNegrInv), ecmul(R, srInv));
|
|
|
|
const p = JtoA(qinJ);
|
|
|
|
return { x: toHex(p[0]), y: toHex(p[1]) };
|
|
|
|
}
|
|
|
|
|
|
|
|
function ecverify(Qx, Qy, sigr, sigs, z) {
|
|
|
|
if (sigs == 0 || sigr == 0) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
const w = invmod(sigs, N);
|
|
|
|
const u1 = mulmod(z, w, N);
|
|
|
|
const u2 = mulmod(sigr, w, N);
|
|
|
|
const Q = AtoJ(Qx, Qy);
|
|
|
|
const G = AtoJ(GX, GY);
|
|
|
|
const RinJ = ecadd(ecmul(G, u1), ecmul(Q, u2));
|
|
|
|
const r = JtoA(RinJ);
|
|
|
|
return sigr.eq(r[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
exports.uint256 = uint256;
|
|
|
|
exports.ecsign = ecsign;
|
|
|
|
exports.ecrecover = ecrecover;
|
|
|
|
exports.generatePublicKeyFromPrivateKeyData =
|
|
|
|
generatePublicKeyFromPrivateKeyData;
|
|
|
|
exports.decompressKey = decompressKey;
|
|
|
|
exports.isValidPoint = isValidPoint;
|
|
|
|
exports.ecverify = ecverify;
|
|
|
|
})();
|