diff --git a/ⵙ∣❁∣ⵙᙁⵙᑐᑕⵙIⵙ옷ⵙ◯ⵙ◯ⵙ옷ⵙIⵙᑐᑕⵙᙁⵙ∣❁∣ⵙ/⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪/⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/BИ.⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪.NB b/ⵙ∣❁∣ⵙᙁⵙᑐᑕⵙIⵙ옷ⵙ◯ⵙ◯ⵙ옷ⵙIⵙᑐᑕⵙᙁⵙ∣❁∣ⵙ/⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪/⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/BИ.⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪.NB
new file mode 100644
index 00000000..aaaf7399
--- /dev/null
+++ b/ⵙ∣❁∣ⵙᙁⵙᑐᑕⵙIⵙ옷ⵙ◯ⵙ◯ⵙ옷ⵙIⵙᑐᑕⵙᙁⵙ∣❁∣ⵙ/⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪/⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/BИ.⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪.NB
@@ -0,0 +1,688 @@
+(* Content-type: application/vnd.wolfram.mathematica *)
+
+(*** Wolfram Notebook File ***)
+(* http://www.wolfram.com/nb *)
+
+(* CreatedBy='Mathematica 12.1' *)
+
+(*CacheID: 234*)
+(* Internal cache information:
+NotebookFileLineBreakTest
+NotebookFileLineBreakTest
+NotebookDataPosition[       158,          7]
+NotebookDataLength[     28766,        678]
+NotebookOptionsPosition[     28088,        659]
+NotebookOutlinePosition[     28488,        675]
+CellTagsIndexPosition[     28445,        672]
+WindowFrame->Normal*)
+
+(* Beginning of Notebook Content *)
+Notebook[{
+Cell[BoxData[{
+ RowBox[{
+  RowBox[{
+   RowBox[{"FabiusF", "::", "usage"}], " ", "=", " ", 
+   "\"\<FabiusF[x] gives the value of the Fabius function F(x) for a \
+non-negative real argument x.\>\""}], ";"}], "\n", 
+ RowBox[{
+  RowBox[{"Macros`SetArgumentCount", "[", 
+   RowBox[{"FabiusF", ",", " ", "1"}], "]"}], ";"}], "\n", 
+ RowBox[{
+  RowBox[{
+   RowBox[{"SyntaxInformation", "[", "FabiusF", "]"}], " ", "=", " ", 
+   RowBox[{"{", 
+    RowBox[{"\"\<ArgumentsPattern\>\"", " ", "->", " ", 
+     RowBox[{"{", "_", "}"}]}], "}"}]}], ";"}], "\n", 
+ RowBox[{
+  RowBox[{
+   RowBox[{"SetAttributes", "[", 
+    RowBox[{"FabiusF", ",", " ", 
+     RowBox[{"{", 
+      RowBox[{"NumericFunction", ",", " ", "Listable"}], "}"}]}], "]"}], 
+   ";"}], "\n"}], "\n", 
+ RowBox[{
+  RowBox[{
+   RowBox[{
+    RowBox[{"Derivative", "[", "n_Integer", "]"}], "[", "FabiusF", "]"}], " ",
+    ":=", " ", 
+   RowBox[{
+    RowBox[{
+     RowBox[{"2", "^", 
+      RowBox[{"(", 
+       RowBox[{"n", " ", 
+        RowBox[{
+         RowBox[{"(", 
+          RowBox[{"n", " ", "+", " ", "1"}], ")"}], "/", "2"}]}], ")"}]}], 
+     " ", 
+     RowBox[{"FabiusF", "[", 
+      RowBox[{
+       RowBox[{"2", "^", "n"}], " ", "#"}], "]"}]}], " ", "&"}]}], "\n", "\n", 
+  RowBox[{"(*", 
+   RowBox[{
+    RowBox[{"https", ":"}], "//", 
+    RowBox[{
+     RowBox[{
+      RowBox[{"mathematica", ".", "stackexchange", ".", "com"}], "/", "a"}], 
+     "/", "13245"}]}], "*)"}]}], "\n", 
+ RowBox[{
+  RowBox[{
+   RowBox[{"powerOfTwoQ", "[", "n_", "]"}], " ", ":=", " ", 
+   RowBox[{
+    RowBox[{"IntegerQ", "[", "n", "]"}], " ", "&&", " ", 
+    RowBox[{
+     RowBox[{"BitAnd", "[", 
+      RowBox[{"n", ",", " ", 
+       RowBox[{"n", " ", "-", " ", "1"}]}], "]"}], " ", "==", " ", "0"}]}]}], 
+  "\n"}], "\n", 
+ RowBox[{
+  RowBox[{
+   RowBox[{"FabiusF", "[", "Infinity", "]"}], " ", "=", " ", 
+   RowBox[{"Interval", "[", 
+    RowBox[{"{", 
+     RowBox[{
+      RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], "]"}]}], ";"}], "\n", 
+ RowBox[{
+  RowBox[{
+   RowBox[{
+    RowBox[{"FabiusF", "[", 
+     RowBox[{"x_", "?", "NumberQ"}], "]"}], " ", "/;", " ", 
+    RowBox[{"If", "[", 
+     RowBox[{
+      RowBox[{
+       RowBox[{"0", " ", "<=", " ", 
+        RowBox[{"Re", "[", "x", "]"}]}], " ", "&&", " ", 
+       RowBox[{
+        RowBox[{"Im", "[", "x", "]"}], " ", "==", " ", "0"}]}], ",", " ", 
+      RowBox[{"powerOfTwoQ", "[", 
+       RowBox[{"Denominator", "[", "x", "]"}], "]"}], ",", " ", 
+      RowBox[{
+       RowBox[{"Message", "[", 
+        RowBox[{
+         RowBox[{"FabiusF", "::", "realnn"}], ",", " ", "x"}], "]"}], ";", 
+       " ", "False"}]}], "]"}]}], " ", ":=", " ", 
+   RowBox[{"iFabiusF", "[", "x", "]"}]}], "\n"}], "\n", 
+ RowBox[{
+  RowBox[{
+   RowBox[{"ariasD", "[", "0", "]"}], " ", "=", " ", "1"}], ";"}], "\n", 
+ RowBox[{
+  RowBox[{
+   RowBox[{
+    RowBox[{"ariasD", "[", 
+     RowBox[{"n_Integer", "?", "Positive"}], "]"}], " ", ":=", " ", 
+    RowBox[{
+     RowBox[{"ariasD", "[", "n", "]"}], " ", "=", " ", 
+     RowBox[{
+      RowBox[{"Sum", "[", 
+       RowBox[{
+        RowBox[{
+         RowBox[{"2", "^", 
+          RowBox[{"(", 
+           RowBox[{
+            RowBox[{"(", 
+             RowBox[{
+              RowBox[{"k", " ", 
+               RowBox[{"(", 
+                RowBox[{"k", " ", "-", " ", "1"}], ")"}]}], " ", "-", " ", 
+              RowBox[{"n", " ", 
+               RowBox[{"(", 
+                RowBox[{"n", " ", "-", " ", "1"}], ")"}]}]}], ")"}], "/", 
+            "2"}], ")"}]}], " ", 
+         RowBox[{
+          RowBox[{"ariasD", "[", "k", "]"}], "/", 
+          RowBox[{
+           RowBox[{"(", 
+            RowBox[{"n", " ", "-", " ", "k", " ", "+", " ", "1"}], ")"}], 
+           "!"}]}]}], ",", " ", 
+        RowBox[{"{", 
+         RowBox[{"k", ",", " ", "0", ",", " ", 
+          RowBox[{"n", " ", "-", " ", "1"}]}], "}"}]}], "]"}], "/", 
+      RowBox[{"(", 
+       RowBox[{
+        RowBox[{"2", "^", "n"}], " ", "-", " ", "1"}], ")"}]}]}]}], ";"}], 
+  "\n"}], "\n", 
+ RowBox[{
+  RowBox[{
+   RowBox[{"tri", "[", "x_", "]"}], " ", ":=", " ", 
+   RowBox[{"Piecewise", "[", 
+    RowBox[{
+     RowBox[{"{", 
+      RowBox[{"{", 
+       RowBox[{
+        RowBox[{"2", " ", "-", " ", "x"}], ",", " ", 
+        RowBox[{"x", " ", ">", " ", "1"}]}], "}"}], "}"}], ",", " ", "x"}], 
+    "]"}]}], "\n"}], "\n", 
+ RowBox[{
+  RowBox[{"iFabiusF", "[", "x_", "]"}], " ", ":=", " ", 
+  RowBox[{"Module", "[", 
+   RowBox[{
+    RowBox[{"{", 
+     RowBox[{
+      RowBox[{"prec", " ", "=", " ", 
+       RowBox[{"Precision", "[", "x", "]"}]}], ",", " ", 
+      RowBox[{"s", " ", "=", " ", "1"}], ",", " ", 
+      RowBox[{"y", " ", "=", " ", "0"}], ",", " ", 
+      RowBox[{"z", " ", "=", " ", 
+       RowBox[{"SetPrecision", "[", 
+        RowBox[{"x", ",", " ", "Infinity"}], "]"}]}], ",", " ", "n", ",", " ",
+       "p", ",", " ", "q", ",", " ", "tol", ",", " ", "w"}], "}"}], ",", " ", 
+    RowBox[{
+     RowBox[{"z", " ", "=", " ", 
+      RowBox[{"If", "[", 
+       RowBox[{
+        RowBox[{"0", " ", "<=", " ", "z", " ", "<=", " ", "2"}], ",", " ", 
+        RowBox[{"tri", "[", "z", "]"}], ",", " ", 
+        RowBox[{
+         RowBox[{"q", " ", "=", " ", 
+          RowBox[{"Quotient", "[", 
+           RowBox[{"z", ",", " ", "2"}], "]"}]}], ";", "\n", "        ", 
+         RowBox[{"(*", 
+          RowBox[{
+           RowBox[{"can", " ", "replace", " ", 
+            RowBox[{"ThueMorse", "[", "]"}], " ", "with", " ", "the", " ", 
+            "implementation", " ", "in", " ", 
+            RowBox[{"https", ":"}]}], "//", 
+           RowBox[{
+            RowBox[{
+             RowBox[{"mathematica", ".", "stackexchange", ".", "com"}], "/", 
+             "a"}], "/", "89351"}]}], "*)"}], 
+         RowBox[{"If", "[", 
+          RowBox[{
+           RowBox[{
+            RowBox[{"ThueMorse", "[", "q", "]"}], " ", "==", " ", "1"}], ",", 
+           " ", 
+           RowBox[{"s", " ", "=", " ", 
+            RowBox[{"-", "1"}]}]}], "]"}], ";", " ", 
+         RowBox[{"tri", "[", 
+          RowBox[{"z", " ", "-", " ", 
+           RowBox[{"2", " ", "q"}]}], "]"}]}]}], "]"}]}], ";", "\n", "    ", 
+     RowBox[{"tol", " ", "=", " ", 
+      RowBox[{"10", "^", 
+       RowBox[{"(", 
+        RowBox[{"-", "prec"}], ")"}]}]}], ";", "\n", "    ", 
+     RowBox[{"While", "[", 
+      RowBox[{
+       RowBox[{"z", " ", ">", " ", "0"}], ",", " ", 
+       RowBox[{
+        RowBox[{"n", " ", "=", " ", 
+         RowBox[{"-", 
+          RowBox[{"Floor", "[", 
+           RowBox[{"RealExponent", "[", 
+            RowBox[{"z", ",", " ", "2"}], "]"}], "]"}]}]}], ";", " ", 
+        RowBox[{"p", " ", "=", " ", 
+         RowBox[{"2", "^", "n"}]}], ";", " ", 
+        RowBox[{"z", " ", "-=", " ", 
+         RowBox[{"1", "/", "p"}]}], ";", " ", 
+        RowBox[{"w", " ", "=", " ", "1"}], ";", "\n", "      ", 
+        RowBox[{"Do", "[", 
+         RowBox[{
+          RowBox[{
+           RowBox[{"w", " ", "=", " ", 
+            RowBox[{
+             RowBox[{"ariasD", "[", "m", "]"}], " ", "+", " ", 
+             RowBox[{"p", " ", "z", " ", 
+              RowBox[{"w", "/", 
+               RowBox[{"(", 
+                RowBox[{"n", " ", "-", " ", "m", " ", "+", " ", "1"}], 
+                ")"}]}]}]}]}], ";", " ", 
+           RowBox[{"p", " ", "/=", " ", "2"}]}], ",", " ", 
+          RowBox[{"{", 
+           RowBox[{"m", ",", " ", "n"}], "}"}]}], "]"}], ";", "\n", "      ", 
+        RowBox[{"y", " ", "=", " ", 
+         RowBox[{"w", " ", "-", " ", "y"}]}], ";", "\n", "      ", 
+        RowBox[{"If", "[", 
+         RowBox[{
+          RowBox[{
+           RowBox[{"Abs", "[", "w", "]"}], " ", "<", " ", 
+           RowBox[{
+            RowBox[{"Abs", "[", "y", "]"}], " ", "tol"}]}], ",", " ", 
+          RowBox[{"Break", "[", "]"}]}], "]"}]}]}], "]"}], ";", "\n", "    ", 
+     RowBox[{"SetPrecision", "[", 
+      RowBox[{
+       RowBox[{"s", " ", 
+        RowBox[{"Abs", "[", "y", "]"}]}], ",", " ", "prec"}], "]"}]}]}], 
+   "]"}]}]}], "Input",
+ CellLabel->
+  "In[183]:=",ExpressionUUID->"b6d7bb97-f801-4b79-84e9-03757a7fafc8"],
+
+Cell[BoxData[{
+ RowBox[{"ClearAll", "[", 
+  RowBox[{"iCurvaturePlotHelper", ",", "CurvaturePlot"}], 
+  "]"}], "\[IndentingNewLine]", 
+ RowBox[{
+  RowBox[{"iCurvaturePlotHelper", "[", 
+   RowBox[{
+    RowBox[{"f_", "?", 
+     RowBox[{"(", 
+      RowBox[{
+       RowBox[{
+        RowBox[{"Head", "[", "#", "]"}], "=!=", "List"}], "&"}], ")"}]}], ",", 
+    RowBox[{"{", 
+     RowBox[{"t_", ",", "tmin_", ",", "tmax_"}], "}"}], ",", 
+    RowBox[{"{", 
+     RowBox[{
+      RowBox[{"{", 
+       RowBox[{"x0_", ",", "y0_"}], "}"}], ",", "\[Theta]0_"}], "}"}], ",", 
+    RowBox[{"opts", ":", 
+     RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], ":=", 
+  RowBox[{"Module", "[", 
+   RowBox[{
+    RowBox[{"{", 
+     RowBox[{"sol", ",", "\[Theta]", ",", "x", ",", "y", ",", "if"}], "}"}], 
+    ",", "\[IndentingNewLine]", 
+    RowBox[{
+     RowBox[{"sol", "=", 
+      RowBox[{"NDSolve", "[", 
+       RowBox[{
+        RowBox[{"{", "\[IndentingNewLine]", 
+         RowBox[{
+          RowBox[{
+           RowBox[{
+            RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], "\[Equal]", "f"}], 
+          ",", "\[IndentingNewLine]", 
+          RowBox[{
+           RowBox[{
+            RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]", 
+           RowBox[{"Cos", "[", 
+            RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", 
+          "\[IndentingNewLine]", 
+          RowBox[{
+           RowBox[{
+            RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]", 
+           RowBox[{"Sin", "[", 
+            RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", 
+          "\[IndentingNewLine]", 
+          RowBox[{
+           RowBox[{"\[Theta]", "[", "tmin", "]"}], "\[Equal]", "\[Theta]0"}], 
+          ",", "\[IndentingNewLine]", 
+          RowBox[{
+           RowBox[{"x", "[", "tmin", "]"}], "\[Equal]", "x0"}], ",", 
+          "\[IndentingNewLine]", 
+          RowBox[{
+           RowBox[{"y", "[", "tmin", "]"}], "\[Equal]", "y0"}]}], 
+         "\[IndentingNewLine]", "}"}], ",", 
+        RowBox[{"{", 
+         RowBox[{"x", ",", "y"}], "}"}], ",", 
+        RowBox[{"{", 
+         RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", "opts"}], 
+       "]"}]}], ";", "\[IndentingNewLine]", 
+     RowBox[{"if", "=", 
+      RowBox[{
+       RowBox[{
+        RowBox[{"{", 
+         RowBox[{
+          RowBox[{"x", "[", "#", "]"}], ",", 
+          RowBox[{"y", "[", "#", "]"}]}], "}"}], "&"}], "/.", 
+       RowBox[{"First", "[", "sol", "]"}]}]}], ";", "\[IndentingNewLine]", 
+     "if"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", 
+ RowBox[{
+  RowBox[{"CurvaturePlot", "[", 
+   RowBox[{"f_", ",", 
+    RowBox[{"{", 
+     RowBox[{"t_", ",", "tmin_", ",", "tmax_"}], "}"}], ",", 
+    RowBox[{"opts", ":", 
+     RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], ":=", 
+  RowBox[{"CurvaturePlot", "[", 
+   RowBox[{"f", ",", 
+    RowBox[{"{", 
+     RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", 
+    RowBox[{"{", 
+     RowBox[{
+      RowBox[{"{", 
+       RowBox[{"0", ",", "0"}], "}"}], ",", "0"}], "}"}], ",", "opts"}], 
+   "]"}]}], "\[IndentingNewLine]", 
+ RowBox[{
+  RowBox[{"CurvaturePlot", "[", 
+   RowBox[{"f_", ",", 
+    RowBox[{"{", 
+     RowBox[{"t_", ",", "tmin_", ",", "tmax_"}], "}"}], ",", 
+    RowBox[{"p", ":", 
+     RowBox[{"{", 
+      RowBox[{
+       RowBox[{"{", 
+        RowBox[{"x0_", ",", "y0_"}], "}"}], ",", "\[Theta]0_"}], "}"}]}], ",", 
+    RowBox[{"opts", ":", 
+     RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], ":=", 
+  RowBox[{"Module", "[", 
+   RowBox[{
+    RowBox[{"{", 
+     RowBox[{
+     "\[Theta]", ",", "x", ",", "y", ",", "sol", ",", "rlsplot", ",", 
+      "rlsndsolve", ",", "if", ",", "ifs"}], "}"}], ",", 
+    "\[IndentingNewLine]", 
+    RowBox[{
+     RowBox[{"rlsplot", "=", 
+      RowBox[{"FilterRules", "[", 
+       RowBox[{
+        RowBox[{"{", "opts", "}"}], ",", 
+        RowBox[{"Options", "[", "ParametricPlot", "]"}]}], "]"}]}], ";", 
+     "\[IndentingNewLine]", 
+     RowBox[{"rlsndsolve", "=", 
+      RowBox[{"FilterRules", "[", 
+       RowBox[{
+        RowBox[{"{", "opts", "}"}], ",", 
+        RowBox[{"Options", "[", "NDSolve", "]"}]}], "]"}]}], ";", 
+     "\[IndentingNewLine]", 
+     RowBox[{"If", "[", 
+      RowBox[{
+       RowBox[{
+        RowBox[{"Head", "[", "f", "]"}], "===", "List"}], ",", 
+       "\[IndentingNewLine]", 
+       RowBox[{
+        RowBox[{"ifs", "=", 
+         RowBox[{
+          RowBox[{
+           RowBox[{"iCurvaturePlotHelper", "[", 
+            RowBox[{"#", ",", 
+             RowBox[{"{", 
+              RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", "p", ",", 
+             RowBox[{"Evaluate", "@", 
+              RowBox[{"(", 
+               RowBox[{"Sequence", "@@", "rlsndsolve"}], ")"}]}]}], "]"}], 
+           "&"}], "/@", "f"}]}], ";", "\[IndentingNewLine]", 
+        RowBox[{"ParametricPlot", "[", 
+         RowBox[{
+          RowBox[{"Evaluate", "[", 
+           RowBox[{
+            RowBox[{
+             RowBox[{"#", "[", "tplot", "]"}], "&"}], "/@", "ifs"}], "]"}], 
+          ",", 
+          RowBox[{"{", 
+           RowBox[{"tplot", ",", "tmin", ",", "tmax"}], "}"}], ",", 
+          RowBox[{"Evaluate", "@", 
+           RowBox[{"(", 
+            RowBox[{"Sequence", "@@", "rlsplot"}], ")"}]}]}], "]"}]}], 
+       "\[IndentingNewLine]", ",", "\[IndentingNewLine]", 
+       RowBox[{
+        RowBox[{"if", "=", 
+         RowBox[{"iCurvaturePlotHelper", "[", 
+          RowBox[{"f", ",", 
+           RowBox[{"{", 
+            RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", "p", ",", 
+           RowBox[{"Evaluate", "@", 
+            RowBox[{"(", 
+             RowBox[{"Sequence", "@@", "rlsndsolve"}], ")"}]}]}], "]"}]}], 
+        ";", "\[IndentingNewLine]", 
+        RowBox[{"ParametricPlot", "[", 
+         RowBox[{
+          RowBox[{"Evaluate", "[", 
+           RowBox[{"if", "[", "tplot", "]"}], "]"}], ",", 
+          RowBox[{"{", 
+           RowBox[{"tplot", ",", "tmin", ",", "tmax"}], "}"}], ",", 
+          RowBox[{"Evaluate", "@", 
+           RowBox[{"(", 
+            RowBox[{"Sequence", "@@", "rlsplot"}], ")"}]}]}], "]"}]}]}], 
+      "\[IndentingNewLine]", "]"}]}]}], "\[IndentingNewLine]", 
+   "]"}]}]}], "Input",
+ CellLabel->
+  "In[195]:=",ExpressionUUID->"f922cec0-aa84-4593-aff3-3268dbccfdf7"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"CurvaturePlot", "[", 
+  RowBox[{
+   RowBox[{"FabiusF", "[", "x", "]"}], ",", 
+   RowBox[{"{", 
+    RowBox[{"x", ",", "0", ",", "4"}], "}"}]}], "]"}]], "Input",
+ CellLabel->
+  "In[205]:=",ExpressionUUID->"83f1c93d-5075-475d-b9f3-efc604a47ce1"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {}, 
+    TagBox[
+     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+      1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
+1:eJxd1nc8lf/7B3D7nGOTMiJS9kiSlXNfbykpoyWliIxSFEqKUGRVQshooeyR
+PbJ3RglZGWWPjKQI58jvPn2+f/3OH+c8no/3fe73db2u+9z32W7leMKWgY6O
+7hD+Rvv8/y8rypamAEFj8G+8ZJt7YELjP9uApRDv2pXoH/v+sws8TLn1LLpX
+SkuzxKx0WtQNqlrc796tddLa5PY6U1/SC97bDgmo9IdpLW/9/ckk0huATblq
+uSle67/v+0KVxubMjq4d5NY+jZriF/7AnWvPJTimS/7vfA/gjLPel9VmU3JS
+zN18oTePYEU5LuDFzovk/84fDLtm4vaJOTiRUYbVyQrjUBji/MspvtuV/N9+
+T4CeYbujNq8HOeORn8GPnjBgio9nUR26R/5v/whQlTz68ZDrfbKAfcpBsXNP
+IW4tzDro6cP/1RMJVZICh6KpL8m+R1qw41+jQC880/+7Q+b/6osB7rGXajuO
+FZMXZObVfC48gwmjhwx97dX/q/c5DIgIDZ9iavxfva9g6KOxoLppB7l5ao/s
+2KVYqD/Ec75pfxcZ/tUfB7u/2616d/aQhWzSnzxcioOkQ5PPBoP6yEv/+omH
++13Kjcyxg+S2z1qcO9ReA1Hv5LHm8KH/9fca7qoN7RivHSEH6LQ+LL39BvKM
+t70y/Dj+v34ToC3kTgnTu2kyOc+CYFySAL1Tf26zBsyT+f/1nwhjWU0OWVsX
+yYviP+/PUhLhxJrkPJ3tEvnjvzySoM94IvmV6Co5JcyHzo+cDB8C8oajetfJ
+Pv/ySQaYa6hfZmbAzBj4PEXupoBbUknHpwFmbO+/vFIh8kc+f48TK8Z5PXG1
+oCoVIhoLIthruLDJf/mlQUn0153qU7xY1bCqqxFDOtTpbr09dW4LFvkvz3QI
+66a/KJQnhF053rg4oZMB29GfeX8mMUyTxLM7bywDZuMXHIcVd2Cs1aaOd/0y
+IZt7ruBFryTWdZuW/1uwCpqtKqaXw14pzczwv38LzJt/hO5N24VZ/5tHFvhm
+Rl8Wc1HGOI9hKmeYsqH12fGDTz32YuPptPlkQ3GsjW7gujqWTwi4vjMxGyQN
+r552YiZj7ta0eWXDRsz93VbtCFOt/JS9cDAHni1OpK4762BTQrT55cDUbUXW
+Bntd7LGrwI+yiRy43e3YIdd4GOProM0zF3RrHkvJvTLE3BUuKDwIyAX7vshi
+jr/HsOJA2nxzwSzq6DTbrZNY02iq/SnpPFDpjS4SQSZYMkabdx5ImwsVHLMw
+xYxiFlO3N+WB38SdG7l9ZljJL9r88+Fz0MIxPTNL7KDSkkyOUz7ojtBt+1ho
+he1w+Pyw730+cFkf9bhgYYtpJOfMMIoWgJEXHz46O+zacIiBgmsBqLwJ5Akq
+sMdShK5lmnwsgDE01vfIyRFrPmHAeW9nIWiO7lJQa3bG0h7IOqbeKYShkG7u
+cD4X7GYFsa2joxBiDi3Y1Ma5YjkLE0pUmSKoXqkpP37TDWMRq38i4V0Ex6pk
+OFKiPDBBgzeLRr1FEDN4Vzya5R721MX75O1dxaDJGCqXNueNicZY5Mf7F4PP
+t1yhSkZfjO8deXPLYDG48bSc3tD3x1I6trr+VnkHbCXMV9NbAjHzsdVukaB3
+MNJAEB4JeITVz/aoHRp9Bwmji4XZfsGY0/eCaCfNElg3/32IdzwUm+sPX415
+UgJVnn4eEplhWGul89naqRJYSSK/jn4ZgSVGHC2dhVJwzVKwWiyOxCzPKAhv
+iSoFlXaF9Eb6GOxezNSg3cEyYNQ2cvWWeYWZcTZgYS/K4IVgovSPgDjMw/JN
+bOmvMjDaknBHWPA1lvnoHt34kXLI+T5dI9X8Bqt4ZH6B83U5zF7R4lh4kYh5
+mmnWqK2Wg6D9hcvG4cmY+cqWHReOVcDyruc9+7NSMY4Ln8by/lZArlJ8yvML
+b7FB/vSDg6cqgT51qPqlVzYW4+CfxJJZCXFXX8gfG8vBNNOyGQUYqmDWpnyz
+snUednREJD9DoQoiOTy9Qqn5mNSXhzbaplVgNsFnV5xTiIkF/uHr9q0Cp5vt
+tXS+xVhdz6ebG/1VkHeELiPXvwxbOr9PMoJQDR+XFk3jSiow6ytJ3dJ7qkF2
+/GK60YMq7MEcd0D5+WrwfmNnubexGhvvd1c78bAa9Ja29Y8J1WK/pccmJwqq
+4btgWhrZpw6TbjCIvjNcDdMicySJjXos4t7W1QT1GjBubbBZJzdh85e8UzVs
+asDkOClZjaEFq1KeMG0NqQGQvTB0b+gD9pOYUfJnogZ46hfdpm61YZbf2O2D
+eGshbs/85tAn7ZiXrMPW7VgtZG28Tbhf0oG1cEl4HHlaCw7RdekNWl3YH2kv
++W9VtXBsuej7m6huzCm3c+DGbC0Uz1ydLWDqxYSF3MgvderAFEWTYgX6MU33
+hrndjnWg8/P9Y1L1AOZhxP2q4VkdsA8qJX3y+oppn47+++NnHZj4huU2bxvG
+zPpETOOF6sGOucg9mXMEK78am3dCpx6E4ypeKpBGMdLKU7uCiHpI1Yow8xId
+x44FstZeLK+H4BYn+bl9E9jQGXcRgYl66PP3uGRkM4lN1+t1uKs1gPevDc2G
+vmksnpAkL2/ZAB3Tfo6fZGYw1m8U/8HABtgpvnUmyX8Wi1oN3of6GuDDK4E/
+ofY/MMPA/QnMnu9B13QxxPvPIqYibvy3MPE9hLarSEQP/MKYk03P2LW+h5d2
+pG0Xm39jlgpa7C2ijcBATlKRrl7GCiu2XPTQa4Q+yViv9OY/2HjGUKWCcyP4
+Kk9rUAZXMD4h7EZoTSNUbubqF9tBwXabfPqgPdMI18Q05QNOUbGLl/Ulf21q
+Au084/q+sHXMNGSj95RtE3yyp5wo4KcDpZN7yVuJzVD/t/ujAJUBSnxXnn5Q
+aoZ54V3OvPWMsNwRM+9p2gyo3vBUWQQThAZdix1Ka4YvAoVcrXos4Nz/8s+T
+z81wxHXGM0iBAKycb47qUJtBr6bCLEWQCPTjkhuJhi3glK79IpHICnktcSan
+XVsAFT1c/MrGBiFOE5nE2BYIcXj3SYafHUplG8/ZL7RA70POZyW6nBDa9yhf
+KfwDmBjUTjwL4AEdeVbWkdIPcGN1yUxFnheqYzUtwsc+wLbaR3wvu3jBLDKW
+uLz3IyyYMjUdVOMD74sLJqW9H2GXRFQdowY/MFS4pTrQtwJpa4qIAEEAjr4J
+pojItkKXiFbWlz4B4A459OrenVbYHfwzszNcCO5J7B88uO0TRD216Zgy2gYq
+QUMdsrqfIMBpMjZETxRujw2857r2Cd5xrroe3ikGMgmdWV/KP4FGhus1XsXt
+kPjSo7RQsQ2+BxpuPXdlB7idNN+Tur8NpAYFHusw7IQvTz6kPTdpgyDlr/pd
+L3dCfrxO9D2vNri+8TN575AE5H7hvHqktQ2WSmyvZYdLA+PTwSGtkTaQmb1e
+nXJEBu658BjvWm6D0PTvTR+YZaGLK0idb1s7fIdR6eFAOWB/z7Q6eLUdwjPc
+LfbVKYJLdt1xZ44OcKBP/dLPtQd6Y4KKrbd3gOsc8fxG6B6gvNfeZrK3A1rl
+Fe+28KmA/V80oWneAYH7nDgDdu6FxuDDl5gyO+CySfzrLFs1uK8qU7dc1QHG
+77Te7FtXA9nqSNHpzg542xqdUhulDidvzrZ/pHZAmFyX988uDZjepLEjyuAz
+3LRXyJ66pQXvH2M3Hlh+hrptLwXcpMlQ1naj+o7LZ+juZCeYDpCh8cDOM5Yv
+PoNIZP+AihGAXGCUg8zsZ2hPGuduU9AG6Yy94qWPOoHdbuNGavgBUGKK3Xw+
+vhMixU8vym86CAvf7zDTF3WCXKatA8/Tg9B6QLhPd6QTjgarxgvH6YLbkeaT
+Hepd0DwZLM/fqQc8YbFSN426QCyzI9vz0mGQCPu1zG/TBb+7NRV91w+DKa9P
+gHlIF8ya5KuG7daHPc7bHabGu+D+xo+rz0oMYayvk/8RpQsshtbSpqyNQDet
+v1yBpxuO73gtIch9FDI6969c1+oG8TpzYrz6Mci8cnr7elg3SF0mGHSkHwfp
+rFUhbtQDDaz1d3d8NYb9PnQmuad64D7TtMuw/in4/gELNLbvgfjenwYmpafg
+97Vb7dGRPXDNUSjfNdYEFPkcF8TmesDWfVM1t+cZYMrWlNr1rBeui3TwpD4x
+gyRx+uK2rF7w0GSjWxE2h0vfOvddr++Fow/9jQ6lmcO4rc3WgoVeULjOkbba
+fB6GXUuUNA99gbgbGcoxYZZwd/m0nfbvL+CCdC+HiFkDG3uinxOxD1weGQz7
+OFuDx3JtWKxwH+i6i0S41lrDko3cnfUDfVBsUxB48YoNlJKC7xQ/7YNfBlhF
+bJ0ttDLGzsiq9YPqXf2pXRl2YFkWNHBGvx8eGYV6buK8DCJqXkX+Fv0Q5cqz
+tMX5MrR8GJAZCegHE+15Xz/NK+D+4MlSVG8/HKjYQVXvt4croo31f90G4HNT
+bG/hKUcQ3Mq6Uy54AJ5av4gMaHaEJjqy7enXA7D8IJ/NQMwJzrz1CM5qHgDP
+SHUlFO0ElfFpV89vHQSPClf2zyHOoDe3daqgbBAUQz+L3X91AwR2aNUe2vgK
+b++/MGLVvg2cFiNWopu/wbpb5Fex6NtQMS3WvCz7DaRjdnQJLNyGmnMdMwkm
+uP0iCbmv3eBqTPqFv5nfIExh+2oG7x2gKAbEnVAcAmNso3Bomxe4rgi6aGkM
+wTZP48REXy/Im0vdIXlgCHJFrTUtZ7wg0bqEb9V0CI5fb7lUWnoX3hg5KL30
+GwIGpo8vtuTfg5Lujx8GB4aAa2jVP+i2DzAr3d1WPzkEQ7+XflzK84E+LbJO
+xuIQNJks6TTO+8AOnzhGd+IwHDjarix06T7Ead402KQyDGebzXL5zvtC7YPh
+K1qPhqHBxapswdYfLIeHOG00RsDwpMD+pOGH0BL5NY3nwAi4dyvsmZd/BFOv
+mpgrjUbgFrHQu+n2I8i9zr8kYDMCaSEt/lq8QWDXcuJNU/AIrNgnuew0eAxO
+HIeDRMZGYKGrvcZzIAT+ak+mPAgeBVt/nb70d2HAYW0VoBAzCruXSUp802FA
+iT1Oan8zCr3GGkafBMKhi6Ho15Z3o/BoCzsVcwuH9ZTWQ69GR4G5u7+eDYuA
+PUo8PM/Ux6Bxp4ByVM9TWMuRXcVGxsA8fkuDnkEMzEvGKIrOjkGBXtxkrE8M
+dJIblv8ujcHa6yFM910MNKSU7isnjUOa8ZET3lLPoDte1ktl9ziMXh88Xkh4
+Dg3Mdzdz3BsHzkGRnIM9L0Bqhn7EQmQCgFwuIXw2Dr7Q7XihJDUBub8zN9m5
+x8FE5tlmut0T8Dun1u7rszioYOO+G3tgAjS5mWOODMRBi42PQrf9BOi56Gjs
+uBAPzWZcJVIlExBmfiF5/PprsM4uOmtsMgmpd9yuyBQlAOtnq6lRy0mwTpSV
+2jKUAMMdj9Ou20/CFo/Y/WqkRJCeW294fG8SXI6GfdtilgjarXc1S9ImIX5N
+PNmQKQmmVIP6v/+dBLMEz8Tk88kQK733dnzSFAR3hFi47EuDFGueX3w5U9Co
+PCHDZo/b7b1rQOkUPMp3EOh9lgYsHAfDL7dNQdqWo4/4KGmQ1Cextn1tCjbS
+Y6cEKtLB70mgkZXhNKxSeUROG2VCbdGfMP5f01DRfrRmVj8bND0+MpZQp+HE
+tUSzE7bZcP7jq1vnWL5D68Ww6U9e2aDmMmX9XPA7iIcnfuXNzQaJKyy7udB3
+qJ7vNiwWzAFm987M+qDvsC5z+pv3XA6Qu/XaL0rMwNGf7STu5DwwU68zQidn
+QUC1LWX0QhHE3m9UdjCbhcSJyISEe0WgEjo+Fmk7C4bnPtp4xBbBtYKqrKlb
+swCcj2ScBotAP7WhwfPFLGjFPL1jd7YYkoQidl8dn4WhuOFPMWfegXf0g/Kz
+rnOwbc8e1RnbUsjrPfscIuZBySLELqa2El7ef3Wn9+U88NNVkdlnKqG8ITvH
+MXke1neS3A1IVXC6ZVQopmQektoEVzeUqoDTj7+2Z2geRPgc+ui9q8Dw6o1b
+jAo/4Kt6gKzjjmoYPN07xF73A7CZ1wXfnGtAd/bAwinXBbDn7/B9olIPjp/C
+g565L0BEWSjd7OF6MFQrOP7VawE0LQQ1jlvUQ659lbF1wAJU+DD07ntYD/wH
+FZWtoxeg6tGDJ0+G6qHm6eCsRskC3NN/wU4OaQDV9n4vtL4AWz3N3X1/v4fL
+1tt7n9/7CeT532VGX5shcJ2cdyp0ERSTRdhX+tvggObJTauBv4B040d7Ev5c
+jpQ8LUV/4TcMK1/x26vZC88bHCa/7VsCYVuT4h9XB6CIzSD4BHUJHNv2bb4K
+Q7Bedq79eu0yqHcU1vTcG4HHa3/sBLz/AKk+hDGtcgxsexz0g3atAPm4327J
+/gm4eKlAuH9mBTary7PslJiG4b0P6oKfr0LjNdW9dnoz0BRyw7H10Bp8O9bD
+O285B1tQZWQGAwWmw5j2rSb9gFWxWi65HApUb9KW3BhZAAm7YxRJRyoM8ro5
+5RMXQTLI2dZNfh2shJteqEr9AlHrzduNRtbh/BNK47jib/BIcE+syP4LFYtq
+NRq6S1AZp8Sh67kBnx9fZ2jRXoZKu8trb2XokFpz9KO38n9gQEKY9XwSHaqI
+LdftF1qBoc4SuSlxenSFe5+Iz8QKmJrz798sQY9OedAdb55eATFXu4n9UvTI
+7lcdG8/cCvx8xdMbK0eP0gbO8T37tQKL7+JMLVXo0WCwms0zulXQu7mRSDlI
+jw69xyJOCq0CMbD8Q8xleqTw5/rWRINVCMdupV3MpUfK+xPIbzNWQbBE40Bw
+Pj16XNeVa521Cv2OcgaFhfTIN225kT93FQ6xVSQSSunR4Zbv3XeKViFHJ8gt
+q5YejRv2Oe+pWYX4gc7rm7roUUXe0kXLHny/Ydvtciv06F5gvmMW3RpMmsQt
+BgEDygyQeLDp6BqweToSarUZ0E46FRPr42vg/tL+9qoOA3oexFmTc3INeBo4
+r13SY0DGqejmkTNroORLjT90nAE9sdPVsb+wBm47jakC1gyILU9H/8qNNZh6
+MbC07s+ABspP+ptFrkEHB8qu+8SAbjz24GfpXQMrpfoB7Q4GpCBJMJPsW4MF
+XjHbyk4G5Gdb/vPAwBpwHVYILP3CgHwvfObyHFoD9iwfruJRBvTscSr3l6k1
+uPlCa7j6DwM6Jem0CqtrELpP6s4WMUYk3uOp0ihAAZGwlyGvxBnRAa91nVwh
+CtiInl6WlGBEORFusc+EKSCXY/JOXZYRlSqyal4Uo8DTA/3sliqMSOo8M2VK
+ioLfL1fflOsxIpiyeflClQJ+v+nO5jozIh/9bNWyExR4eMtIU8CFEUlOv8k9
+YUyBhKN2pl6ujChY5Fbu5CkKOBv9PKF/hxGpy/8kc5hS4G/EqNyULyMamVb1
+17WgwPLcrLpCNCNS+d6z5GyP77/2/stIBSNq77Q6numD/w4SP3Acq2ZEykJ/
+/fl8KZD4YP5WeS0j8t9986C7H368ntNcdCMjCtSdMdcOpEDI7LtTJzoY0f2y
+j4wVjymwMNc42DrOiNIHM62doymwkVz9dZadCRWyxBTWZFBATTSrNYKLCfX6
+NZZsfkuBrD9tv7R4mdDxzs2bLmVRAGSMBh7zMyHVL+QaplwKkAVvCiuLM6Fz
+Z3bJyhdRoEfcgt1XjQndLRFLkKumQPD7j3r6VkwoN2uo7+dnChC2Bu5dtWFC
+nHsPRXN3UeCP5wuD5EtMSHdja6VCNwViagJXGK8yoe12lwyseykgO2iOVd5i
+QvsnOT1LByiw65qfBvkxExJOv/BLbJwCjIPjxcbFTAiLuOze8JsC99qSytZK
+mFDEkcfvs5YocLk36ltcORNqGp9JiVqmQEXsT++5GibUKasvb71Cgf2cvUqB
+H5nQ7kOKx6cp+H2lM2StZoQJjTf1/8xloMK5i8euGHAwI4dJ68b9XFQoqXzS
+tsTFjNDqeAQdNxUCA2sNY3mZkeLG6JZy3MdD2YIW+ZlREddHUObF10PyeJ6J
+M6N58zcHODZTwc9xkmNOjRmtyH3jCxCiwpcVTC/eihn9uKLS/GQnFaL2aCmJ
+2uLHd7NbbZOgwmyZruTLS8zoTR3HWipuu7SxfTEOzMj5nIlihSQVtgUsEsNc
+mZH6i2c1fdJU4Ls2QPJ/yIxe1vE7jctTwSuit4rpMTPyTf7jYaVAhQ/aj+/f
+D2FGR98axXzFbS0dKecdwYw6Q1WZOhXxep/eZ/B8xYwMBybL85So0PC4/a1r
+LjNi1h+MPqRChSuKNTzL+cwoMq2euxB30pKV180ivJ+IiOQde6nQXa7p4lLG
+jDY51++l4v6ZMdd6vYEZsV8O/vFajQqG37ZKOfcxo5OuAznvNalw61Z+wg0G
+FsRqskK+iagw6djMKMvMgqTUbvq24eZkM7kyRGBBNtqLE7LaVHAYP21oyMGC
+ZNzGmQZxv7vVcElKgAX5mrq9V9WhgtmQaM+AAgs65Q1e1QepsHn8SVy4Egu6
+NcEqxKVLBX+9D45H9rCg2sTq8XO4q132iBars6B5jjmeX7jjWDdVhuuwoHRH
+oSF+PSo8tmRa0DdlQUV+B+y1jlDh2gcxNkYzFrS/yua5J+6llDjZkvMsyGDV
+lqsCt27uTVdpGxbkk05q1NKngqu4ETA7siC/Fv9Xuw2oUL6R61fpy4L0f/1Y
+WTWkQtsi/1fXABY0aVZO3WWE10Mo01B8iK/XnD1ji/vtbu+1FyEsSPXu+tZW
+3M/TDsa5P2NB3CjuT9RRKhxOyHZUzWZBy1LumzmPU2HvE7v6ylwWVHiEf78a
+7lkOOZHDBSzotNz+OQvcZc7JHedK8P7V9tVm4VahszH2rsP3/xP64PAJKsx4
+WaR96GVBdw3fm188SQVLwV3CJv0s6Jm0yPcA3HsWXEK+DbKgEoEaplTcu4z2
+uy+OsKCzhwempnHzi61bCMyxoMwDAQEXjalwM+axrQ09ARVKiSzpn8KvFz2l
+mTlGAjpwrezLRdxSlC7nWywEtEyZPeeNO2SDy+chGwE992/QKsB9PD8qM3sz
+ARmjsw8FTKhgEZ+qqSlAQD+VfW8q4b6760ljrRABBbhEM+vhVnb+MNEtSkAM
+BiICrrj5zlrJr8sQEFV0QrQVd61YaKW/PAElWWfrj+L28LtyknsXAV188XLH
+Cu40wc2eO1QIKP/QyX6x01SQnWrvOYwRkMYeWZ9ruH2vOyVHniCgEQvbqxTc
+UaLaXptOEVBNbYwT2xkqqH/wPBV6moCAR1VpK+65kV3MD80IaNP7jEkN3FZk
+6cueFwnosFKlgQtu8jZWnTU7Atp1w0LPB7eCh7bILXsCKjvnwhKK26cyscPJ
+iYDspOk+puEm7SRo27gT0PhAZtQgbl2TkyLDHgT0IFOndBr3NrPRVfO7BHRs
+lDF5CfdySkPeaV88r5VPX9hN8fzzLGX1gwlIXEqxSh33PiGj7cqvCaipeF4q
+ALdw0R+6rAR8fZVNLBT3yYamIblkAnqJ/n6Pxt1hNRwnkUFAUao/Kam4meiK
+xQULCYizpXFrM+6qk3cZI4sJiFIqXdaOO9XIdoy3lIAM7farfMFdu/tBEnsV
+Af1I+pU5ifv1DT55umYCWk3y6WE4SwW19/kcnh8IqNV8/CAJd0CO/Y/VVgJ6
+q/YmlAs381PBvF+f8bwP+5ZvxZ2bY7VvcpCA1F8l31fG/Sz9tYjNEAENXOcd
+U8MtnfBrY2iEgPquc0mQcftu1Nf1TRJQs0DTkUO4na2Fjrb+JKD0P+57zuI2
+EW/S9/5NQMOd6iwWuBPr/fRU/hBQfMOnYmvcR75I7H9GJaAuEd4qB9yXGJb2
+XiQQke/Jzxc9cZv1Mu4RZCWibOMvet641R8JK31gJ6JrXqe4/HC7v7osq8xL
+RKFJP/WDcLMZ2Ir+FSYiqTnX8BjcgrsKhXNEiej8ltaUF7hvveYQshEnogyp
+2aRYWh7Mn/iapYho/a6jRSLu8bPqvJ6yRFTE3CqUgnuRLZlLSYGI/iyMV6Xh
+djIIZ41UJiLXmyqfsnA/0eYmHt5LRA6GNuq5uMvNnzBT1YjoNBEF5+MuEo+l
+syITkfmZAfp3uJnMxpYV9IjoLp8lXzWt3jOev4eOEFHTNf4fNbipHIKL4YZE
+9Ord4Ls63B3Lp+dWTxDRngyt7Y24TdvXvmecIqJIwZSKJtycBbFTFmeIKI+h
+0bAFt7D8j9F6cyKKDsna34q7KyJm+LYlET0pkUz9hFsi6eA3OWsiYmetYGjH
+PXLhdd8TOyJiKE0K/Yz7Sox9u/kNIto39lmsF/eF12KfuF3x/XIrZb7Q+g3v
+/lB7m4gseryk+3DPsx5slPEiIhG7DOIA7pN31usH7uH91Cd8p3l7amFtyH0i
++twTXDuIu5RNrnIpkIj82I6c+4b7u9REWcojPD/JBKEh3Ifb4kvOBROR8hR9
+B81nI4QKq8OJaOBEn8wIbkILd+bjV0QUf9vAbwx3ytsbN3njiWirpjjjOG7o
+6iZHvSGi1Mq0OzRf633ZGpdCRG6xnuYTuEPS6aMk0oloqVz4Pc3Vb20t0jKJ
+aE1aQH4S91VlxYW8XCISuPpxiuYbqWHF6gVEdIV1AE3hniP/uVdeRETnUhci
+aH7eXMXzvoyI5A592j2NW6xaok+/kogUOHvcafbrfPi6rZqIam/ZV9GsrXdq
+T18DESnKZml/p10vb0oo55uI6P18tCfNl3jF6kZbiOi2oW8hzcGiM8Zzbfj1
+2tYpOoN797tjItc/E9FPJ5djNBuaFY4vdxFR5+uHXjRjBd6udP1ERM0N+Uyz
++sVJzG+QiBg53q3RzMRvSGAdIqKEkY+is7jzvQWiN43j+T/ktKF5lOxlGT1J
+RI6e5+/T7P53FH9SEZHnhck4mp2Dst5J/iCi109+dNP81HSzT/pPvP+UiB80
+Z8neOaL0Gz//gQqWOdyxG0O8BctEdMjgrjDNBr26/RqrRGSQ8F2J5qj8jDcV
+FCKa373pAM1WEbwOOn+JyKaPzYRmofNfqQaMJFRJznelOfLQgfp2ZhKSHvH0
+o/nNnrTHJkQSsi05Gk7zl+3cJv2sJPRcc28czR95XLdZcpDw/38aGTQLMg5M
+jHGRkC/j5SKaTy1pZ13mJSFvldZqmpf6ONANfhLScbHrpPnRxxvEFUESOmGf
+P0DztcovbR7CJHROzWaMZrVsiKEXJaH7BvdnaO6KTbzgv52EZmqEF2kuDWGT
+ZdtJQlZ71Fdo5rvnvBgiSUJpbf3rNA9cIN+PkSMh/7hOwjxuxZNv9LcpkpDf
+WVV2mvMPkPjeKJGQwjENbprNVR0HpPaQ0J760U00C0t3JWTsJaGj6/v4aR4W
+3Hd1tzoJqWjpCdH8nC1+b6Emnkc9pwjN5HWWv5pkElIbfCpKc+G8Q0MlkFBV
+w+h2mi8fkQ8K2U9CA6c0dtJ8ImnmuMVBEtqlfELy3zpDOv8uPRKyM1WWpjnp
+/JXBv0dI6GrnoAzNF/in7V4dI6E700nyNO9qu/SbbEJCQcUfFWkuRrZsnhdI
+yM29YDfNydlW4mUOJGRxz2LPP4eaH9O8j89rMFyF5nnHM17FMSR0UTznn5cV
+jPryG0hIDC7+8+iMjmrOLxLqnpL55/8DdghmFA==
+       "]]},
+     Annotation[#, "Charting`Private`Tag$437871#1"]& ]}, {}},
+  Axes->{True, True},
+  AxesLabel->{None, None},
+  AxesOrigin->{0, 0},
+  DisplayFunction->Identity,
+  FrameLabel->{{None, None}, {None, None}},
+  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+  GridLinesStyle->Directive[
+    GrayLevel[0.5, 0.4]],
+  ImagePadding->All,
+  Method->{
+   "DefaultGraphicsInteraction" -> {
+     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
+      "Effects" -> {
+       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
+        "Droplines" -> {
+         "freeformCursorMode" -> True, 
+          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> 
+    None},
+  PlotRange->{{0., 3.243990348766134}, {0., 1.7721998270300445`}},
+  PlotRangeClipping->True,
+  PlotRangePadding->{{
+     Scaled[0.05], 
+     Scaled[0.05]}, {
+     Scaled[0.05], 
+     Scaled[0.05]}},
+  Ticks->{Automatic, Automatic}]], "Output",
+ CellLabel->
+  "Out[205]=",ExpressionUUID->"e6db7c3b-6fac-4a3a-b719-f61dc8c48834"]
+}, Open  ]]
+},
+WindowSize->{786, 884},
+WindowMargins->{{Automatic, 210}, {-186, Automatic}},
+FrontEndVersion->"12.1 for Microsoft Windows (64-bit) (June 9, 2020)",
+StyleDefinitions->"Default.nb",
+ExpressionUUID->"403bb8c0-0efb-4c0b-a09f-03976a9aa4f6"
+]
+(* End of Notebook Content *)
+
+(* Internal cache information *)
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+(*NotebookFileOutline
+Notebook[{
+Cell[558, 20, 8002, 224, 656, "Input",ExpressionUUID->"b6d7bb97-f801-4b79-84e9-03757a7fafc8"],
+Cell[8563, 246, 6219, 170, 561, "Input",ExpressionUUID->"f922cec0-aa84-4593-aff3-3268dbccfdf7"],
+Cell[CellGroupData[{
+Cell[14807, 420, 266, 7, 28, "Input",ExpressionUUID->"83f1c93d-5075-475d-b9f3-efc604a47ce1"],
+Cell[15076, 429, 12996, 227, 220, "Output",ExpressionUUID->"e6db7c3b-6fac-4a3a-b719-f61dc8c48834"]
+}, Open  ]]
+}
+]
+*)
+
+(* End of internal cache information *)
+