diff --git a/◯ᔓᔕᴥᗱᗴᙁᗩ✤ᔓᔕИNꖴ◯⚪◯ꖴИNᔓᔕ✤ᗩᙁᗱᗴᴥᔓᔕ◯ⵙ◯ᔓᔕᴥᗱᗴᙁᗩ✤ᔓᔕИNꖴ◯⚪◯ꖴИNᔓᔕ✤ᗩᙁᗱᗴᴥᔓᔕ◯/◯ᗩIᗝI8◯ⵙ◯8IᗝIᗩ◯/◯✤ᗱᗴИNᴥᗱᗴ✤ИNꖴ◯ⵙ◯ꖴИN✤ᗱᗴᴥИNᗱᗴ✤◯/◯ᴥᗱᗴᔓᔕᗯⓄᴥ⚭◯ⵙ◯⚭ᴥⓄᗯᔓᔕᗱᗴᴥ◯/LMTH.....⚪ᔓᔕ⚪✻⚪ᴥ⚪ᗩ⚪ᙏ⚪✻⚪Ⓞ⚪⚭⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪⚭⚪Ⓞ⚪✻⚪ᙏ⚪ᗩ⚪ᴥ⚪✻⚪ᔓᔕ⚪.....HTML b/◯ᔓᔕᴥᗱᗴᙁᗩ✤ᔓᔕИNꖴ◯⚪◯ꖴИNᔓᔕ✤ᗩᙁᗱᗴᴥᔓᔕ◯ⵙ◯ᔓᔕᴥᗱᗴᙁᗩ✤ᔓᔕИNꖴ◯⚪◯ꖴИNᔓᔕ✤ᗩᙁᗱᗴᴥᔓᔕ◯/◯ᗩIᗝI8◯ⵙ◯8IᗝIᗩ◯/◯✤ᗱᗴИNᴥᗱᗴ✤ИNꖴ◯ⵙ◯ꖴИN✤ᗱᗴᴥИNᗱᗴ✤◯/◯ᴥᗱᗴᔓᔕᗯⓄᴥ⚭◯ⵙ◯⚭ᴥⓄᗯᔓᔕᗱᗴᴥ◯/LMTH.....⚪ᔓᔕ⚪✻⚪ᴥ⚪ᗩ⚪ᙏ⚪✻⚪Ⓞ⚪⚭⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪⚭⚪Ⓞ⚪✻⚪ᙏ⚪ᗩ⚪ᴥ⚪✻⚪ᔓᔕ⚪.....HTML
index f54854e6..7426a988 100644
--- a/◯ᔓᔕᴥᗱᗴᙁᗩ✤ᔓᔕИNꖴ◯⚪◯ꖴИNᔓᔕ✤ᗩᙁᗱᗴᴥᔓᔕ◯ⵙ◯ᔓᔕᴥᗱᗴᙁᗩ✤ᔓᔕИNꖴ◯⚪◯ꖴИNᔓᔕ✤ᗩᙁᗱᗴᴥᔓᔕ◯/◯ᗩIᗝI8◯ⵙ◯8IᗝIᗩ◯/◯✤ᗱᗴИNᴥᗱᗴ✤ИNꖴ◯ⵙ◯ꖴИN✤ᗱᗴᴥИNᗱᗴ✤◯/◯ᴥᗱᗴᔓᔕᗯⓄᴥ⚭◯ⵙ◯⚭ᴥⓄᗯᔓᔕᗱᗴᴥ◯/LMTH.....⚪ᔓᔕ⚪✻⚪ᴥ⚪ᗩ⚪ᙏ⚪✻⚪Ⓞ⚪⚭⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪⚭⚪Ⓞ⚪✻⚪ᙏ⚪ᗩ⚪ᴥ⚪✻⚪ᔓᔕ⚪.....HTML
+++ b/◯ᔓᔕᴥᗱᗴᙁᗩ✤ᔓᔕИNꖴ◯⚪◯ꖴИNᔓᔕ✤ᗩᙁᗱᗴᴥᔓᔕ◯ⵙ◯ᔓᔕᴥᗱᗴᙁᗩ✤ᔓᔕИNꖴ◯⚪◯ꖴИNᔓᔕ✤ᗩᙁᗱᗴᴥᔓᔕ◯/◯ᗩIᗝI8◯ⵙ◯8IᗝIᗩ◯/◯✤ᗱᗴИNᴥᗱᗴ✤ИNꖴ◯ⵙ◯ꖴИN✤ᗱᗴᴥИNᗱᗴ✤◯/◯ᴥᗱᗴᔓᔕᗯⓄᴥ⚭◯ⵙ◯⚭ᴥⓄᗯᔓᔕᗱᗴᴥ◯/LMTH.....⚪ᔓᔕ⚪✻⚪ᴥ⚪ᗩ⚪ᙏ⚪✻⚪Ⓞ⚪⚭⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪⚭⚪Ⓞ⚪✻⚪ᙏ⚪ᗩ⚪ᴥ⚪✻⚪ᔓᔕ⚪.....HTML
@@ -9,7 +9,7 @@
 <H1>Bookmarks Menu</H1>
 
 <DL><p>
-    <DT><H3 ADD_DATE="1686522526" LAST_MODIFIED="1692231833" PERSONAL_TOOLBAR_FOLDER="true">Bookmarks Toolbar</H3>
+    <DT><H3 ADD_DATE="1686522526" LAST_MODIFIED="1692333299" PERSONAL_TOOLBAR_FOLDER="true">Bookmarks Toolbar</H3>
     <DL><p>
         <DT><A HREF="about:networking" ADD_DATE="1686620191" LAST_MODIFIED="1689093825"></A>
         <DT><A HREF="about:unloads" ADD_DATE="1686967501" LAST_MODIFIED="1687312931"></A>
@@ -22,7 +22,7 @@
         <DT><A HREF="file:///C:/USERS/ADMINISTRATOR/APPDATA/ROAMING/MOZILLA/FIREFOX/PROFILES/LIZQECW1.DEFAULT-RELEASE/CHROME/USERCHROME.CSS" ADD_DATE="1689020283" LAST_MODIFIED="1689093760"></A>
         <DT><A HREF="http://oooooooooooooooo.boards.net/" ADD_DATE="1686506562" LAST_MODIFIED="1689872320" ICON_URI="https://storage.proboards.com/7292646/images/I0iVBPPsvJ0cqILUhydx.ico" ICON="">‌</A>
         <DT><A HREF="http://o.iboards.ru/" ADD_DATE="1686506562" LAST_MODIFIED="1689872312" ICON_URI="http://o.iboards.ru/store/o_iboards_ru/images/favicon.ico" ICON="">⠀ⵙ⠀◯⠀ⵙ⠀◯⠀ⵙ⠀</A>
-        <DT><H3 ADD_DATE="1686506557" LAST_MODIFIED="1692231833"> </H3>
+        <DT><H3 ADD_DATE="1686506557" LAST_MODIFIED="1692333299"> </H3>
         <DL><p>
             <DT><H3 ADD_DATE="1686506557" LAST_MODIFIED="1687312236"> </H3>
             <DL><p>
@@ -88,7 +88,7 @@
                     </DL><p>
                 </DL><p>
             </DL><p>
-            <DT><H3 ADD_DATE="1686506557" LAST_MODIFIED="1691558863">⚪∣❁∣⚪ᙁ⚪ᑐᑕ⚪І⚪옷⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪옷⚪І⚪ᑐᑕ⚪ᙁ⚪∣❁∣⚪</H3>
+            <DT><H3 ADD_DATE="1686506557" LAST_MODIFIED="1692333299">⚪∣❁∣⚪ᙁ⚪ᑐᑕ⚪І⚪옷⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪옷⚪І⚪ᑐᑕ⚪ᙁ⚪∣❁∣⚪</H3>
             <DL><p>
                 <DT><A HREF="https://fsymbols.com/bubble/" ADD_DATE="1686506557" LAST_MODIFIED="1687312236">Bubble Letters generator (copy and paste) - 𝙁𝙎𝙮𝙢𝙗𝙤𝙡𝙨</A>
                 <DT><A HREF="https://www.w3schools.com/jsref/jsref_pow.asp" ADD_DATE="1686506557" LAST_MODIFIED="1687312236">JavaScript pow() Method</A>
@@ -111,15 +111,24 @@
                 <DT><A HREF="http://www.mathway.com/" ADD_DATE="1686506557" LAST_MODIFIED="1687312236">Mathway</A>
                 <DT><A HREF="https://www.desmos.com/calculator/1fqz8esril" ADD_DATE="1686506557" LAST_MODIFIED="1687312236" ICON_URI="https://www.desmos.com/assets/img/apps/graphing/favicon.ico" ICON="">Desmos | Graphing Calculator</A>
                 <DT><A HREF="https://numpy.org/doc/stable/reference/generated/numpy.diff.html" ADD_DATE="1689288446" LAST_MODIFIED="1689288493" ICON_URI="https://numpy.org/doc/stable/_static/favicon.ico" ICON="">numpy.diff — NumPy v1.25 Manual</A>
-                <DT><H3 ADD_DATE="1691031996" LAST_MODIFIED="1691558863">⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪</H3>
+                <DT><H3 ADD_DATE="1691031996" LAST_MODIFIED="1692333299">⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪</H3>
                 <DL><p>
-                    <DT><H3 ADD_DATE="1691558610" LAST_MODIFIED="1691558863">⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪</H3>
+                    <DT><H3 ADD_DATE="1691558610" LAST_MODIFIED="1692333299">⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪</H3>
                     <DL><p>
-                        <DT><H3 ADD_DATE="1691558801" LAST_MODIFIED="1691558863">⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪</H3>
+                        <DT><H3 ADD_DATE="1691558801" LAST_MODIFIED="1692333299">⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪</H3>
                         <DL><p>
-                            <DT><H3 ADD_DATE="1691558847" LAST_MODIFIED="1691558863">⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪</H3>
+                            <DT><H3 ADD_DATE="1691558847" LAST_MODIFIED="1692333299">⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪</H3>
                             <DL><p>
-                                <DT><A HREF="https://mathematica.stackexchange.com/questions/120331/how-do-i-numerically-evaluate-and-plot-the-fabius-function" ADD_DATE="1691558863" LAST_MODIFIED="1691558863" ICON_URI="https://cdn.sstatic.net/Sites/mathematica/Img/favicon.ico?v=191b7583f52e" ICON="">plotting - How do I numerically evaluate and plot the Fabius function? - Mathematica Stack Exchange</A>
+                                <DT><H3 ADD_DATE="1692333072" LAST_MODIFIED="1692333299">⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪</H3>
+                                <DL><p>
+                                    <DT><A HREF="https://resources.wolframcloud.com/FunctionRepository/resources/FabiusF/" ADD_DATE="1692332943" LAST_MODIFIED="1692333075" ICON_URI="https://www.wolframcloud.com/obj/resourcesystem/webresources/FunctionRepository/5.0.0/favicon/apple-touch-icon.png" ICON="">FabiusF | Wolfram Function Repository</A>
+                                    <DT><A HREF="https://mathematica.stackexchange.com/questions/120331/how-do-i-numerically-evaluate-and-plot-the-fabius-function" ADD_DATE="1691558863" LAST_MODIFIED="1692333299" ICON_URI="https://cdn.sstatic.net/Sites/mathematica/Img/favicon.ico?v=191b7583f52e" ICON="">plotting - How do I numerically evaluate and plot the Fabius function? - Mathematica Stack Exchange</A>
+                                </DL><p>
+                                <DT><H3 ADD_DATE="1692333123" LAST_MODIFIED="1692333283">⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪</H3>
+                                <DL><p>
+                                    <DT><A HREF="https://resources.wolframcloud.com/FunctionRepository/resources/CurvaturePlot" ADD_DATE="1692333283" LAST_MODIFIED="1692333283" ICON_URI="https://www.wolframcloud.com/obj/resourcesystem/webresources/FunctionRepository/5.0.0/favicon/apple-touch-icon.png" ICON="">CurvaturePlot | Wolfram Function Repository</A>
+                                </DL><p>
+                                <DT><A HREF="https://mathematica.stackexchange.com/questions/159067/schwarz-christoffel-maps-from-unit-disk-to-regular-polygons-visualization" ADD_DATE="1692251977" LAST_MODIFIED="1692251977" ICON_URI="https://cdn.sstatic.net/Sites/mathematica/Img/favicon.ico?v=191b7583f52e" ICON="">plotting - Schwarz-Christoffel maps from unit disk to regular polygons visualization - Mathematica Stack Exchange</A>
                             </DL><p>
                         </DL><p>
                     </DL><p>